1 INTRODUCTION
1.1 WHAT IS AN OPERATING SYSTEM?
1.1.1 The Operating System as an Extended Machine
1.1.2 The Operating System as a Resource Manager
1.2 HISTORY OF OPERATING SYSTEMS
1.2.1 The First Generation
1.2.2 The Second Generation
1.2.3 The Third Generation
1.2.4 The Fourth Generation
1.3 COMPUTER HARDWARE REVIEW
1.3.1 Processors
1.3.2 Memory
1.3.3 Disks
1.3.4 Tapes
1.3.5 I/O Devices
1.3.6 Buses
1.3.7 Booting the Computer
1.4 THE OPERATING SYSTEM ZOO
1.4.1 Mainframe Operating Systems
1.4.2 Server Operating Systems
1.4.3 Multiprocessor Operating Systems
1.4.4 Personal Computer Operating Systems
1.4.5 Handheld Computer Operating Systems
1.4.6 Embedded Operating Systems.
1.4.7 Sensor Node Operating Systems
1.4.8 Real-Time Operating Systems
1.4.9 Smart Card Operating Systems
1.5 OPERATING SYSTEM CONCEPTS
1.5.1 Processes
1.5.2 Address Spaces
1.5.3 Files
1.5.4 Input/Output
1.5.5 Protection
1.5.6 The Shell
1.5.7 Ontogeny Recapitulates Phylogeny
1.6 SYSTEM CALLS
1.6.1 System Calls for Process Management
1.6.2 System Calls for File Management
1.6.3 System Calls for Directory Management
1.6.4 Miscellaneous System Calls
1.6.5 The Windows Win32 API
1.7 OPERATING SYSTEM STRUCTURE
1.7.1 Monolithic Systems
1.7.2 Layered Systems
1.7.3 Microkernels
1.7.4 Client-Server Model
1.7.5 Virtual Machines
1.7.6 Exokernels
1.8 THE WORLD ACCORDING TO C
1.8.1 The C Language
1.8.2 Header Files
1.8.3 Large Programming Projects
1.8.4 The Model of Run Time
1.9 RESEARCH ON OPERATING SYSTEMS
1.10 OUTLINE OF THE REST OF THIS BOOK
1.11 METRIC UNITS
1.12 SUMMARY
2 PROCESSES AND THREADS
2.1 PROCESSES
2.1.1 The Process Model
2.1.2 Process Creation
2.1.3 Process Termination
2.1.4 Process Hierarchies
2.1.5 Process States
2.1.6 Implementation of Processes
2.1.7 Modeling Multiprogramming
2.2 THREADS
2.2.1 Thread Usage
2.2.2 The Classical Thread Model
2.2.3 POSIX Threads
2.2.4 Implementing Threads in User Space
2.2.5 Implementing Threads in the Kernel
2.2.6 Hybrid Implementations
2.2.7 Scheduler Activations
2.2.8 Pop-Up Threads
2.2.9 Making Single-Threaded Code Multithreaded
2.3 INTERPROCESS COMMUNICATION
2.3.1 Race Conditions
2.3.2 Critical Regions
2.3.3 Mutual Exclusion with Busy Waiting
2.3.4 Sleep and Wakeup
2.3.5 Semaphores
2.3.6 Mutexes
2.3.7 Monitors
2.3.8 Message Passing
2.3.9 Barriers
2.4 SCHEDULING
2.4.1 Introduction to Scheduling
2.4.2 Scheduling in Batch Systems
2.4.3 Scheduling in Interactive Systems
2.4.4 Scheduling in Real-Time Systems
2.4.5 Policy versus Mechanism
2.4.6 Thread Scheduling
2.5 CLASSICAL IPC PROBLEMS
2.5.1 The Dining Philosophers Problem
2.5.2 The Readers and Writers Problem
2.6 RESEARCH ON PROCESSES AND THREADS
2.7 SUMMARY
3 MEMORY MANAGEMENT
3.1 NO MEMORY ABSTRACTION
3.2 A MEMORY ABSTRACTION: ADDRESS SPACES
3.2.1 The Notion of an Address Space
3.2.2 Swapping
3.2.3 Managing Free Memory
3.3 VIRTUAL MEMORY
3.3.1 Paging
3.3.2 Page Tables
3.3.3 Speeding Up Paging
3.3.4 Page Tables for Large Memories
3.4 PAGE LACEMENT ALGORITHMS
3.4.1 The Optimal Page Replacement Algorithm
3.4.2 The Not Recently Used Page Replacement Algorithm
3.4.3 The First-In, First-Out
3.4.4 The Second Chance Page Replacement Algorithm
3.4.5 The Clock Page Replacement Algorithm
3.4.6 The Least Recently Used
3.4.7 Simulating LRU in Software
3.4.8 The Working Set Page Replacement Algorithm
3.4.9 The WSClock Page Replacement Algorithm
3.4.10 Summary of Page Replacement Algorithms
3.5 DESIGN ISSUES FOR PAGING SYSTEMS
3.5.1 Local versus Global Allocation Policies
3.5.2 Load Control
3.5.3 Page Size
3.5.4 Separate Instruction and Data Spaces
3.5.5 Shared Pages
3.5.6 Shared Libraries
3.5.7 Mapped Files
3.5.8 Cleaning Policy
3.5.9 Virtual Memory Interface
3.6 IMPLEMENTATION ISSUES
3.6.1 Operating System Involvement with Paging
3.6.2 Page Fault Handling
3.6.3 Instruction Backup
3.6.4 Locking Pages in Memory
3.6.5 Backing Store
3.6.6 Separation of Policy and Mechanism
3.7 SEGMENTATION
3.7.1 Implementation of Pure Segmentation
3.7.2 Segmentation with Paging: MULTICS
3.7.3 Segmentation with Paging: The Intel Pentium
3.8 RESEARCH ON MEMORY MANAGEMENT
3.9 SUMMARY
4 FILE SYSTEMS
4.1 FILES
4.1.1 File Naming
4.1.2 File Structure
4.1.3 File Types
4.1.4 File Access
4.1.5 File Attributes
4.1.6 File Operations
4.1.7 An Example Program Using File System Calls
4.2 DIRECTORIES
4.2.1 Single-Level Directory Systems
4.2.2 Hierarchical Directory Systems
4.2.3 Path Names
4.2.4 Directory Operations
4.3 FILE SYSTEM IMPLEMENTATION
4.3.1 File System Layout
4.3.2 Implementing Files
4.3.3 Implementing Directories
4.3.4 Shared Files
4.3.5 Log-Structured File Systems
4.3.6 Journaling File Systems
4.3.7 Virtual File Systems
4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION
4.4.1 Disk Space Management
4.4.2 File System Backups
4.4.3 File System Consistency
4.4.4 File System Performance
4.4.5 Defragmenting Disks
4.5 EXAMPLE FILE SYSTEMS
4.5.1 CD-ROM File Systems
4.5.2 The MS-DOS File System
4.5.3 The UNIX V7 File System
4.6 RESEARCH ON FILE SYSTEMS
4.7 SUMMARY
5 INPUT/OUTPUT
5.1 PRINCIPLES OF I/O HARDWARE
5.1.1 I/O Devices
5.1.2 Device Controllers
5.1.3 Memory-Mapped I/O
5.1.4 Direct Memory Access
5.1.5 Interrupts Revisited
5.2 PRINCIPLES OF I/O SOFTWARE
5.2.1 Goals of the I/O Software
5.2.2 Programmed I/O
5.2.3 Interrupt-Driven I/O
5.2.4 I/O Using DMA
5.3 I/O SOFTWARE LAYERS
5.3.1 Interrupt Handlers
5.3.2 Device Drivers
5.3.3 Device-Independent I/O Software
5.3.4 User-Space I/O Software
5.4 DISKS
5.4.1 Disk Hardware
5.4.2 Disk Formatting
5.4.3 Disk Arm Scheduling Algorithms
5.4.4 Error Handling
5.4.5 Stable Storage
5.5 CLOCKS
5.5.1 Clock Hardware
5.5.2 Clock Software
5.5.3 Soft Timers
5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR
5.6.1 Input Software
5.6.2 Output Software
5.7 THIN CLIENTS
5.8 POWER MANAGEMENT
5.8.1 Hardware Issues
5.8.2 Operating System Issues:
5.8.3 Application Program Issues
5.9 RESEARCH ON INPUT/OUTPUT
5.10 SUMMARY
6 DEADLOCKS
6.1 RESOURCES
6.1.1 Preemptable and Nonpreemptable Resources
6.1.2 Resource Acquisition
6.2 INTRODUCTION TO DEADLOCKS
6.2.1 Conditions for Resource Deadlocks
6.2.2 Deadlock Modeling
6.3 THE OSTRICH ALGORITHM
6.4 DEADLOCK DETECTION AND RECOVERY
6.4.1 Deadlock Detection with One Resource of Each Type
6.4.2 Deadlock Detection with Multiple Resources of Each Type
6.4.3 Recovery from Deadlock
6.5 DEADLOCK AVOIDANCE
6.5.1 Resource Trajectories
6.5.2 Safe and Unsafe States
6.5.3 The Banker’s Algorithm for a Single Resource
6.5.4 The Banker’s Algorithm for Multiple Resources
6.6 DEADLOCK PREVENTION
6.6.1 Attacking the Mutual Exclusion Condition
6.6.2 Attacking the Hold and Wait Condition
6.6.3 Attacking the No Preemption Condition
6.6.4 Attacking the Circular Wait Condition
6.7 OTHER ISSUES
6.7.1 Two-Phase Locking
6.7.2 Communication Deadlocks
6.7.3 Livelock
6.7.4 Starvation
6.8 RESEARCH ON DEADLOCKS
6.9 SUMMARY
7 MULTIMEDIA OPERATING SYSTEMS
7.1 INTRODUCTION TO MULTIMEDIA
7.2 MULTIMEDIA FILES
7.2.1 Video Encoding
7.2.2 Audio Encoding
7.3 VIDEO COMPRESSION
7.3.1 The JPEG Standard
7.3.2 The MPEG Standard
7.4 AUDIO COMPRESSION
7.5 MULTIMEDIA PROCESS SCHEDULING
7.5.1 Scheduling Homogeneous Processes
7.5.2 General Real-Time Scheduling
7.5.3 Rate Monotonic Scheduling
7.5.4 Earliest Deadline First Scheduling
7.6 MULTIMEDIA FILE SYSTEM PARADIGMS
7.6.1 VCR Control Functions
7.6.2 Near Video on Demand
7.6.3 Near Video on Demand with VCR Functions
7.7 FILE PLACEMENT
7.7.1 Placing a File on a Single Disk
7.7.2 Two Alternative File Organization Strategies
7.7.3 Placing Files for Near Video on Demand
7.7.4 Placing Multiple Files on a Single Disk
7.7.5 Placing Files on Multiple Disks
7.8 CACHING
7.8.1 Block Caching
7.8.2 File Caching
7.9 DISK SCHEDULING FOR MULTIMEDIA
7.9.1 Static Disk Scheduling
7.9.2 Dynamic Disk Scheduling
7.10 RESEARCH ON MULTIMEDIA
7.11 SUMMARY
8 MULTIPLE PROCESSOR SYSTEMS
8.1 MULTIPROCESSORS
8.1.1 Multiprocessor Hardware
8.1.2 Multiprocessor Operating System Types
8.1.3 Multiprocessor Synchronization
8.1.4 Multiprocessor Scheduling
8.2 MULTICOMPUTERS
8.2.1 Multicomputer Hardware
8.2.2 Low-Level Communication Software
8.2.3 User-Level Communication Software
8.2.4 Remote Procedure Call
8.2.5 Distributed Shared Memory
8.2.6 Multicomputer Scheduling
8.2.7 Load Balancing
8.3 VIRTUALIZATION
8.3.1 Requirements for Virtualization
8.3.2 Type 1 Hypervisors
8.3.3 Type 2 Hypervisors
8.3.4 Paravirtualization
8.3.5 Memory Virtualization
8.3.6 I/O Virtualization
8.3.7 Virtual Appliances
8.3.8 Virtual Machines on Multicore CPUs
8.3.9 Licensing Issues
8.4 DISTRIBUTED SYSTEMS
8.4.1 Network Hardware
8.4.2 Network Services and Protocols
8.4.3 Document-Based Middleware
8.4.4 File System-Based Middleware
8.4.5 Object-Based Middleware
8.4.6 Coordination-Based Middleware
8.5 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS
8.6 SUMMARY
9 SECURITY
9.1 THE SECURITY ENVIRONMENT
9.1.1 Threats
9.1.2 Intruders
9.1.3 Accidental Data Loss
9.2 BASICS OF CRYPTOGRAPHY
9.2.1 Secret-Key Cryptography
9.2.2 Public-Key Cryptography
9.2.3 One-Way Functions
9.2.4 Digital Signatures
9.2.5 Trusted Platform Module
9.3 PROTECTION MECHANISMS
9.3.1 Protection Domains
9.3.2 Access Control Lists
9.3.3 Capabilities
9.3.4 Trusted systems
9.3.5 Trusted Computing Base
9.3.6 Formal Models of Secure Systems
9.3.7 Multilevel Security
9.3.8 Covert Channels
9.4 AUTHENTICATION
9.4.1 Authentication Using Passwords
9.4.2 Authentication Using a Physical Object
9.4.3 Authentication Using Biometrics
9.5 INSIDER ATTACKS
9.5.1 Logic Bombs
9.5.2 Trap Doors
9.5.3 Login Spoofing
9.6 EXPLOITING CODE BUGS
9.6.1 Buffer Overflow Attacks
9.6.2 Format String Attacks
9.6.3 Return to libc Attacks
9.6.4 Integer Overflow Attacks
9.6.5 Code Injection Attacks
9.6.6 Privilege Escalation Attacks
9.7 MALWARE
9.7.1 Trojan Horses
9.7.2 Viruses
9.7.3 Worms
9.7.4 Spyware
9.7.5 Rootkits
9.8 DEFENSES
9.8.1 Firewalls
9.8.2 Antivirus and Anti-Antivirus Techniques
9.8.3 Code Signing
9.8.4 Jailing
9.8.5 Model-Based Intrusion Detection
9.8.6 Encapsulating Mobile Code
9.8.7 Java Security
9.9 RESEARCH ON SECURITY
9.10 SUMMARY
10 OPERATING SYSTEMS DESIGN
10.1 THE NATURE OF THE DESIGN PROBLEM
10.1.1 Goals
10.1.2 Why is it Hard to Design an Operating System?
10.2 INTERFACE DESIGN
10.2.1 Guiding Principles
10.2.2 Paradigms
10.2.3 The System Call Interface
10.3 IMPLEMENTATION
10.3.1 System Structure
10.3.2 Mechanism versus Policy
10.3.3 Orthogonality
10.3.4 Naming
10.3.5 Binding Time
10.3.6 Static versus Dynamic Structures
10.3.7 Top-Down versus Bottom-Up Implementation
10.3.8 Useful Techniques
10.4 PERFORMANCE
10.4.1 Why Are Operating Systems Slow?
10.4.2 What Should Be Optimized?
10.4.3 Space-Time Trade-offs
10.4.4 Caching
10.4.5 Hints
10.4.6 Exploiting Locality
10.4.7 Optimize the Common Case
10.5 PROJECT MANAGEMENT
10.5.1 The Mythical Man Month
10.5.2 Team Structure
10.5.3 The Role of Experience
10.5.4 No Silver Bullet
10.6 TRENDS IN OPERATING SYSTEM DESIGN
10.6.1 Virtualization
10.6.2 Multicore Chips
10.6.3 Large Address Space Operating Systems
10.6.4 Networking
10.6.5 Parallel and Distributed Systems
10.6.6 Multimedia
10.6.7 Battery-Powered Computers
10.6.8 Embedded Systems
10.6.9 Sensor Nodes
10.7 SUMMARY
11 CASE STUDY 1: LINUX
11.1 HISTORY OF UNIX AND LINUX
11.1.1 UNICS
11.1.2 PDP-11 UNIX
11.1.3 Portable UNIX
11.1.4 Berkeley UNIX
11.1.5 Standard UNIX
11.1.6 MINIX
11.1.7 Linux
11.2 OVERVIEW OF LINUX
11.2.1 Linux Goals
11.2.2 Interfaces to Linux
11.2.3 The Shell
11.2.4 Linux Utility Programs
11.2.5 Kernel Structure
11.3 PROCESSES IN LINUX
11.3.1 Fundamental Concepts
11.3.2 Process Management System Calls in Linux
11.3.3 Implementation of Processes and Threads in Linux
11.3.4 Scheduling in Linux
11.3.5 Booting Linux
11.4 MEMORY MANAGEMENT IN LINUX
11.4.1 Fundamental Concepts
11.4.2 Memory Management System Calls in Linux
11.4.3 Implementation of Memory Management in Linux
11.4.4 Paging in Linux
11.5 INPUT/OUTPUT IN LINUX
11.5.1 Fundamental Concepts
11.5.2 Networking
11.5.3 Input/Output System Calls in Linux
11.5.4 Implementation of Input/Output in Linux
11.5.5 Modules in Linux
11.6 THE LINUX FILE SYSTEM
11.6.1 Fundamental Concepts
11.6.2 File System Calls in Linux
11.6.3 Implementation of the Linux File System
11.6.4 NFS: The Network File System
11.7 SECURITY IN LINUX
11.7.1 Fundamental Concepts
11.7.2 Security System Calls in Linux
11.7.3 Implementation of Security in Linux
11.8 SUMMARY
12 CASE STUDY 2: WINDOWS VISTA
12.1 HISTORY OF WINDOWS VISTA
12.1.1 1980s: MS-DOS
12.1.2 1990s: MS-DOS-based Windows
12.1.3 2000s: NT-based Windows
12.1.4 Windows Vista
12.2 PROGRAMMING WINDOWS VISTA
12.2.1 The Native NT Application Programming Interface
12.2.2 The Win32 Application Programming Interface
12.2.3 The Windows Registry
12.3 SYSTEM STRUCTURE
12.3.1 Operating System Structure
12.3.2 Booting Windows Vista
12.3.3 Implementation of the Object Manager
12.3.4 Subsystems, DLLs, and User-mode Services
12.4 PROCESSES AND THREADS IN WINDOWS VISTA
12.4.1 Fundamental Concepts
12.4.2 Job, Process, Thread and Fiber Management API Calls
12.4.3 Implementation of Processes and Threads
12.5 MEMORY MANAGEMENT
12.5.1 Fundamental Concepts
12.5.2 Memory Management System Calls
12.5.3 Implementation of Memory Management
12.6 CACHING IN WINDOWS VISTA
12.7 INPUT/OUTPUT IN WINDOWS VISTA
12.7.1 Fundamental Concepts
12.7.2 Input/Output API Calls
12.7.3 Implementation of I/O
12.8 THE WINDOWS NT FILE SYSTEM
12.8.1 Fundamental Concepts
12.8.2 Implementation of the NT File System
12.9 SECURITY IN WINDOWS VISTA
12.9.1 Fundamental Concepts
12.9.2 Security API Calls
12.9.3 Implementation of Security
12.10 SUMMARY
13 READING LIST AND BIBLIOGRAPHY
13.1 SUGGESTIONS FOR FURTHER READING
13.1.1 Introduction and General Works
13.1.2 Processes and Threads
13.1.3 Memory Management
13.1.4 Input/Output
13.1.5 File Systems
13.1.6 eadlocks
13.1.7 Multimedia Operating Systems
13.1.8 Multiple Processor Systems
13.1.9 ecurity
13.1.10 Linux
13.1.11 Windows Vista
13.1.12 The Symbian OS
13.1.13 Design Principles
13.2 ALPHABETICAL BIBLIOGRAPHY
INDEX