Modern Operating Systems: Pearson New International Edition


3e édition

VitalSource eBook (VitalBook) - En anglais 48,00 € DRM - Momentanément indisponible

Spécifications


Éditeur
Pearson Education
Édition
3
Auteur
Andrew Tanenbaum,
Langue
anglais
BISAC Subject Heading
COM067000 COMPUTERS / Hardware
BIC subject category (UK)
UK Computer hardware
Code publique Onix
05 Enseignement supérieur
Date de première publication du titre
01 novembre 2013
Subject Scheme Identifier Code
Classification thématique Thema: Matériel informatique

VitalSource eBook


Date de publication
01 novembre 2013
ISBN-13
9781292038193
Ampleur
Nombre de pages de contenu principal : 1056
Code interne
1292038195
Protection technique e-livre
DRM

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Sommaire


1 INTRODUCTION

1.1 WHAT IS AN OPERATING SYSTEM?

1.1.1 The Operating System as an Extended Machine

1.1.2 The Operating System as a Resource Manager

1.2 HISTORY OF OPERATING SYSTEMS

1.2.1 The First Generation

1.2.2 The Second Generation

1.2.3 The Third Generation

1.2.4 The Fourth Generation

1.3 COMPUTER HARDWARE REVIEW

1.3.1 Processors

1.3.2 Memory

1.3.3 Disks

1.3.4 Tapes

1.3.5 I/O Devices

1.3.6 Buses

1.3.7 Booting the Computer

1.4 THE OPERATING SYSTEM ZOO

1.4.1 Mainframe Operating Systems

1.4.2 Server Operating Systems

1.4.3 Multiprocessor Operating Systems

1.4.4 Personal Computer Operating Systems

1.4.5 Handheld Computer Operating Systems

1.4.6 Embedded Operating Systems.

1.4.7 Sensor Node Operating Systems

1.4.8 Real-Time Operating Systems

1.4.9 Smart Card Operating Systems

1.5 OPERATING SYSTEM CONCEPTS

1.5.1 Processes

1.5.2 Address Spaces

1.5.3 Files

1.5.4 Input/Output

1.5.5 Protection

1.5.6 The Shell

1.5.7 Ontogeny Recapitulates Phylogeny

1.6 SYSTEM CALLS

1.6.1 System Calls for Process Management

1.6.2 System Calls for File Management

1.6.3 System Calls for Directory Management

1.6.4 Miscellaneous System Calls

1.6.5 The Windows Win32 API

1.7 OPERATING SYSTEM STRUCTURE

1.7.1 Monolithic Systems

1.7.2 Layered Systems

1.7.3 Microkernels

1.7.4 Client-Server Model

1.7.5 Virtual Machines

1.7.6 Exokernels

1.8 THE WORLD ACCORDING TO C

1.8.1 The C Language

1.8.2 Header Files

1.8.3 Large Programming Projects

1.8.4 The Model of Run Time

1.9 RESEARCH ON OPERATING SYSTEMS

1.10 OUTLINE OF THE REST OF THIS BOOK

1.11 METRIC UNITS

1.12 SUMMARY

 

2 PROCESSES AND THREADS

2.1 PROCESSES

2.1.1 The Process Model

2.1.2 Process Creation

2.1.3 Process Termination

2.1.4 Process Hierarchies

2.1.5 Process States

2.1.6 Implementation of Processes

2.1.7 Modeling Multiprogramming

2.2 THREADS

2.2.1 Thread Usage

2.2.2 The Classical Thread Model

2.2.3 POSIX Threads

2.2.4 Implementing Threads in User Space

2.2.5 Implementing Threads in the Kernel

2.2.6 Hybrid Implementations

2.2.7 Scheduler Activations

2.2.8 Pop-Up Threads

2.2.9 Making Single-Threaded Code Multithreaded

2.3 INTERPROCESS COMMUNICATION

2.3.1 Race Conditions

2.3.2 Critical Regions

2.3.3 Mutual Exclusion with Busy Waiting

2.3.4 Sleep and Wakeup

2.3.5 Semaphores

2.3.6 Mutexes

2.3.7 Monitors

2.3.8 Message Passing

2.3.9 Barriers

2.4 SCHEDULING

2.4.1 Introduction to Scheduling

2.4.2 Scheduling in Batch Systems

2.4.3 Scheduling in Interactive Systems

2.4.4 Scheduling in Real-Time Systems

2.4.5 Policy versus Mechanism

2.4.6 Thread Scheduling

2.5 CLASSICAL IPC PROBLEMS

2.5.1 The Dining Philosophers Problem

2.5.2 The Readers and Writers Problem

2.6 RESEARCH ON PROCESSES AND THREADS

2.7 SUMMARY

 

3 MEMORY MANAGEMENT

3.1 NO MEMORY ABSTRACTION

3.2 A MEMORY ABSTRACTION: ADDRESS SPACES

3.2.1 The Notion of an Address Space

3.2.2 Swapping

3.2.3 Managing Free Memory

3.3 VIRTUAL MEMORY

3.3.1 Paging

3.3.2 Page Tables

3.3.3 Speeding Up Paging

3.3.4 Page Tables for Large Memories

3.4 PAGE LACEMENT ALGORITHMS

3.4.1 The Optimal Page Replacement Algorithm

3.4.2 The Not Recently Used Page Replacement Algorithm

3.4.3 The First-In, First-Out

3.4.4 The Second Chance Page Replacement Algorithm

3.4.5 The Clock Page Replacement Algorithm

3.4.6 The Least Recently Used

3.4.7 Simulating LRU in Software

3.4.8 The Working Set Page Replacement Algorithm

3.4.9 The WSClock Page Replacement Algorithm

3.4.10 Summary of Page Replacement Algorithms

3.5 DESIGN ISSUES FOR PAGING SYSTEMS

3.5.1 Local versus Global Allocation Policies

3.5.2 Load Control

3.5.3 Page Size

3.5.4 Separate Instruction and Data Spaces

3.5.5 Shared Pages

3.5.6 Shared Libraries

3.5.7 Mapped Files

3.5.8 Cleaning Policy

3.5.9 Virtual Memory Interface

3.6 IMPLEMENTATION ISSUES

3.6.1 Operating System Involvement with Paging

3.6.2 Page Fault Handling

3.6.3 Instruction Backup

3.6.4 Locking Pages in Memory

3.6.5 Backing Store

3.6.6 Separation of Policy and Mechanism

3.7 SEGMENTATION

3.7.1 Implementation of Pure Segmentation

3.7.2 Segmentation with Paging: MULTICS

3.7.3 Segmentation with Paging: The Intel Pentium

3.8 RESEARCH ON MEMORY MANAGEMENT

3.9 SUMMARY

 

4 FILE SYSTEMS

4.1 FILES

4.1.1 File Naming

4.1.2 File Structure

4.1.3 File Types

4.1.4 File Access

4.1.5 File Attributes

4.1.6 File Operations

4.1.7 An Example Program Using File System Calls

4.2 DIRECTORIES

4.2.1 Single-Level Directory Systems

4.2.2 Hierarchical Directory Systems

4.2.3 Path Names

4.2.4 Directory Operations

4.3 FILE SYSTEM IMPLEMENTATION

4.3.1 File System Layout

4.3.2 Implementing Files

4.3.3 Implementing Directories

4.3.4 Shared Files

4.3.5 Log-Structured File Systems

4.3.6 Journaling File Systems

4.3.7 Virtual File Systems

4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION

4.4.1 Disk Space Management

4.4.2 File System Backups

4.4.3 File System Consistency

4.4.4 File System Performance

4.4.5 Defragmenting Disks

4.5 EXAMPLE FILE SYSTEMS

4.5.1 CD-ROM File Systems

4.5.2 The MS-DOS File System

4.5.3 The UNIX V7 File System

4.6 RESEARCH ON FILE SYSTEMS

4.7 SUMMARY

 

5 INPUT/OUTPUT

5.1 PRINCIPLES OF I/O HARDWARE

5.1.1 I/O Devices

5.1.2 Device Controllers

5.1.3 Memory-Mapped I/O

5.1.4 Direct Memory Access

5.1.5 Interrupts Revisited

5.2 PRINCIPLES OF I/O SOFTWARE

5.2.1 Goals of the I/O Software

5.2.2 Programmed I/O

5.2.3 Interrupt-Driven I/O

5.2.4 I/O Using DMA

5.3 I/O SOFTWARE LAYERS

5.3.1 Interrupt Handlers

5.3.2 Device Drivers

5.3.3 Device-Independent I/O Software

5.3.4 User-Space I/O Software

5.4 DISKS

5.4.1 Disk Hardware

5.4.2 Disk Formatting

5.4.3 Disk Arm Scheduling Algorithms

5.4.4 Error Handling

5.4.5 Stable Storage

5.5 CLOCKS

5.5.1 Clock Hardware

5.5.2 Clock Software

5.5.3 Soft Timers

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR

5.6.1 Input Software

5.6.2 Output Software

5.7 THIN CLIENTS

5.8 POWER MANAGEMENT

5.8.1 Hardware Issues

5.8.2 Operating System Issues:

5.8.3 Application Program Issues

5.9 RESEARCH ON INPUT/OUTPUT

5.10 SUMMARY

 

6 DEADLOCKS

6.1 RESOURCES

6.1.1 Preemptable and Nonpreemptable Resources

6.1.2 Resource Acquisition

6.2 INTRODUCTION TO DEADLOCKS

6.2.1 Conditions for Resource Deadlocks

6.2.2 Deadlock Modeling

6.3 THE OSTRICH ALGORITHM

6.4 DEADLOCK DETECTION AND RECOVERY

6.4.1 Deadlock Detection with One Resource of Each Type

6.4.2 Deadlock Detection with Multiple Resources of Each Type

6.4.3 Recovery from Deadlock

6.5 DEADLOCK AVOIDANCE

6.5.1 Resource Trajectories

6.5.2 Safe and Unsafe States

6.5.3 The Banker’s Algorithm for a Single Resource

6.5.4 The Banker’s Algorithm for Multiple Resources

6.6 DEADLOCK PREVENTION

6.6.1 Attacking the Mutual Exclusion Condition

6.6.2 Attacking the Hold and Wait Condition

6.6.3 Attacking the No Preemption Condition

6.6.4 Attacking the Circular Wait Condition

6.7 OTHER ISSUES

6.7.1 Two-Phase Locking

6.7.2 Communication Deadlocks

6.7.3 Livelock

6.7.4 Starvation

6.8 RESEARCH ON DEADLOCKS

6.9 SUMMARY

 

7 MULTIMEDIA OPERATING SYSTEMS

7.1 INTRODUCTION TO MULTIMEDIA

7.2 MULTIMEDIA FILES

7.2.1 Video Encoding

7.2.2 Audio Encoding

7.3 VIDEO COMPRESSION

7.3.1 The JPEG Standard

7.3.2 The MPEG Standard

7.4 AUDIO COMPRESSION

7.5 MULTIMEDIA PROCESS SCHEDULING

7.5.1 Scheduling Homogeneous Processes

7.5.2 General Real-Time Scheduling

7.5.3 Rate Monotonic Scheduling

7.5.4 Earliest Deadline First Scheduling

7.6 MULTIMEDIA FILE SYSTEM PARADIGMS

7.6.1 VCR Control Functions

7.6.2 Near Video on Demand

7.6.3 Near Video on Demand with VCR Functions

7.7 FILE PLACEMENT

7.7.1 Placing a File on a Single Disk

7.7.2 Two Alternative File Organization Strategies

7.7.3 Placing Files for Near Video on Demand

7.7.4 Placing Multiple Files on a Single Disk

7.7.5 Placing Files on Multiple Disks

7.8 CACHING

7.8.1 Block Caching

7.8.2 File Caching

7.9 DISK SCHEDULING FOR MULTIMEDIA

7.9.1 Static Disk Scheduling

7.9.2 Dynamic Disk Scheduling

7.10 RESEARCH ON MULTIMEDIA

7.11 SUMMARY

 

8 MULTIPLE PROCESSOR SYSTEMS

8.1 MULTIPROCESSORS

8.1.1 Multiprocessor Hardware

8.1.2 Multiprocessor Operating System Types

8.1.3 Multiprocessor Synchronization

8.1.4 Multiprocessor Scheduling

8.2 MULTICOMPUTERS

8.2.1 Multicomputer Hardware

8.2.2 Low-Level Communication Software

8.2.3 User-Level Communication Software

8.2.4 Remote Procedure Call

8.2.5 Distributed Shared Memory

8.2.6 Multicomputer Scheduling

8.2.7 Load Balancing

8.3 VIRTUALIZATION

8.3.1 Requirements for Virtualization

8.3.2 Type 1 Hypervisors

8.3.3 Type 2 Hypervisors

8.3.4 Paravirtualization

8.3.5 Memory Virtualization

8.3.6 I/O Virtualization

8.3.7 Virtual Appliances

8.3.8 Virtual Machines on Multicore CPUs

8.3.9 Licensing Issues

8.4 DISTRIBUTED SYSTEMS

8.4.1 Network Hardware

8.4.2 Network Services and Protocols

8.4.3 Document-Based Middleware

8.4.4 File System-Based Middleware

8.4.5 Object-Based Middleware

8.4.6 Coordination-Based Middleware

8.5 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS

8.6 SUMMARY

 

9 SECURITY

9.1 THE SECURITY ENVIRONMENT

9.1.1 Threats

9.1.2 Intruders

9.1.3 Accidental Data Loss

9.2 BASICS OF CRYPTOGRAPHY

9.2.1 Secret-Key Cryptography

9.2.2 Public-Key Cryptography

9.2.3 One-Way Functions

9.2.4 Digital Signatures

9.2.5 Trusted Platform Module

9.3 PROTECTION MECHANISMS

9.3.1 Protection Domains

9.3.2 Access Control Lists

9.3.3 Capabilities

9.3.4 Trusted systems

9.3.5 Trusted Computing Base

9.3.6 Formal Models of Secure Systems

9.3.7 Multilevel Security

9.3.8 Covert Channels

9.4 AUTHENTICATION

9.4.1 Authentication Using Passwords

9.4.2 Authentication Using a Physical Object

9.4.3 Authentication Using Biometrics

9.5 INSIDER ATTACKS

9.5.1 Logic Bombs

9.5.2 Trap Doors

9.5.3 Login Spoofing

9.6 EXPLOITING CODE BUGS

9.6.1 Buffer Overflow Attacks

9.6.2 Format String Attacks

9.6.3 Return to libc Attacks

9.6.4 Integer Overflow Attacks

9.6.5 Code Injection Attacks

9.6.6 Privilege Escalation Attacks

9.7 MALWARE

9.7.1 Trojan Horses

9.7.2 Viruses

9.7.3 Worms

9.7.4 Spyware

9.7.5 Rootkits

9.8 DEFENSES

9.8.1 Firewalls

9.8.2 Antivirus and Anti-Antivirus Techniques

9.8.3 Code Signing

9.8.4 Jailing

9.8.5 Model-Based Intrusion Detection

9.8.6 Encapsulating Mobile Code

9.8.7 Java Security

9.9 RESEARCH ON SECURITY

9.10 SUMMARY

 

10 OPERATING SYSTEMS DESIGN

10.1 THE NATURE OF THE DESIGN PROBLEM

10.1.1 Goals

10.1.2 Why is it Hard to Design an Operating System?

10.2 INTERFACE DESIGN

10.2.1 Guiding Principles

10.2.2 Paradigms

10.2.3 The System Call Interface

10.3 IMPLEMENTATION

10.3.1 System Structure

10.3.2 Mechanism versus Policy

10.3.3 Orthogonality

10.3.4 Naming

10.3.5 Binding Time

10.3.6 Static versus Dynamic Structures

10.3.7 Top-Down versus Bottom-Up Implementation

10.3.8 Useful Techniques

10.4 PERFORMANCE

10.4.1 Why Are Operating Systems Slow?

10.4.2 What Should Be Optimized?

10.4.3 Space-Time Trade-offs

10.4.4 Caching

10.4.5 Hints

10.4.6 Exploiting Locality

10.4.7 Optimize the Common Case

10.5 PROJECT MANAGEMENT

10.5.1 The Mythical Man Month

10.5.2 Team Structure

10.5.3 The Role of Experience

10.5.4 No Silver Bullet

10.6 TRENDS IN OPERATING SYSTEM DESIGN

10.6.1 Virtualization

10.6.2 Multicore Chips

10.6.3 Large Address Space Operating Systems

10.6.4 Networking

10.6.5 Parallel and Distributed Systems

10.6.6 Multimedia

10.6.7 Battery-Powered Computers

10.6.8 Embedded Systems

10.6.9 Sensor Nodes

10.7 SUMMARY

 

11 CASE STUDY 1: LINUX

11.1 HISTORY OF UNIX AND LINUX

11.1.1 UNICS

11.1.2 PDP-11 UNIX

11.1.3 Portable UNIX

11.1.4 Berkeley UNIX

11.1.5 Standard UNIX

11.1.6 MINIX

11.1.7 Linux

11.2 OVERVIEW OF LINUX

11.2.1 Linux Goals

11.2.2 Interfaces to Linux

11.2.3 The Shell

11.2.4 Linux Utility Programs

11.2.5 Kernel Structure

11.3 PROCESSES IN LINUX

11.3.1 Fundamental Concepts

11.3.2 Process Management System Calls in Linux

11.3.3 Implementation of Processes and Threads in Linux

11.3.4 Scheduling in Linux

11.3.5 Booting Linux

11.4 MEMORY MANAGEMENT IN LINUX

11.4.1 Fundamental Concepts

11.4.2 Memory Management System Calls in Linux

11.4.3 Implementation of Memory Management in Linux

11.4.4 Paging in Linux

11.5 INPUT/OUTPUT IN LINUX

11.5.1 Fundamental Concepts

11.5.2 Networking

11.5.3 Input/Output System Calls in Linux

11.5.4 Implementation of Input/Output in Linux

11.5.5 Modules in Linux

11.6 THE LINUX FILE SYSTEM

11.6.1 Fundamental Concepts

11.6.2 File System Calls in Linux

11.6.3 Implementation of the Linux File System

11.6.4 NFS: The Network File System

11.7 SECURITY IN LINUX

11.7.1 Fundamental Concepts

11.7.2 Security System Calls in Linux

11.7.3 Implementation of Security in Linux

11.8 SUMMARY

 

12 CASE STUDY 2: WINDOWS VISTA

12.1 HISTORY OF WINDOWS VISTA

12.1.1 1980s: MS-DOS

12.1.2 1990s: MS-DOS-based Windows

12.1.3 2000s: NT-based Windows

12.1.4 Windows Vista

12.2 PROGRAMMING WINDOWS VISTA

12.2.1 The Native NT Application Programming Interface

12.2.2 The Win32 Application Programming Interface

12.2.3 The Windows Registry

12.3 SYSTEM STRUCTURE

12.3.1 Operating System Structure

12.3.2 Booting Windows Vista

12.3.3 Implementation of the Object Manager

12.3.4 Subsystems, DLLs, and User-mode Services

12.4 PROCESSES AND THREADS IN WINDOWS VISTA

12.4.1 Fundamental Concepts

12.4.2 Job, Process, Thread and Fiber Management API Calls

12.4.3 Implementation of Processes and Threads

12.5 MEMORY MANAGEMENT

12.5.1 Fundamental Concepts

12.5.2 Memory Management System Calls

12.5.3 Implementation of Memory Management

12.6 CACHING IN WINDOWS VISTA

12.7 INPUT/OUTPUT IN WINDOWS VISTA

12.7.1 Fundamental Concepts

12.7.2 Input/Output API Calls

12.7.3 Implementation of I/O

12.8 THE WINDOWS NT FILE SYSTEM

12.8.1 Fundamental Concepts

12.8.2 Implementation of the NT File System

12.9 SECURITY IN WINDOWS VISTA

12.9.1 Fundamental Concepts

12.9.2 Security API Calls

12.9.3 Implementation of Security

12.10 SUMMARY

 

13 READING LIST AND BIBLIOGRAPHY

13.1 SUGGESTIONS FOR FURTHER READING

13.1.1 Introduction and General Works

13.1.2 Processes and Threads

13.1.3 Memory Management

13.1.4 Input/Output

13.1.5 File Systems

13.1.6 eadlocks

13.1.7 Multimedia Operating Systems

13.1.8 Multiple Processor Systems

13.1.9 ecurity

13.1.10 Linux

13.1.11 Windows Vista

13.1.12 The Symbian OS

13.1.13 Design Principles

13.2 ALPHABETICAL BIBLIOGRAPHY

 

INDEX

 

 


Avez-vous une question à nous poser ?