First Course in Abstract Algebra, A: Pearson New International Edition


7e édition

VitalSource eBook (VitalBook) - En anglais 57,00 € DRM

Spécifications


Éditeur
Pearson Education
Édition
7
Auteur
John B. Fraleigh,
Langue
anglais
BISAC Subject Heading
MAT002000 MATHEMATICS / Algebra
BIC subject category (UK)
PBF Algebra
Code publique Onix
05 College/higher education
Date de première publication du titre
01 novembre 2013
Subject Scheme Identifier Code
Classification thématique Thema: Algèbre

VitalSource eBook


Date de publication
01 novembre 2013
ISBN-13
9781292037592
Ampleur
Nombre de pages de contenu principal : 464
Code interne
1292037598
Protection technique e-livre
DRM

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Sommaire


(*) Not required for the remainder of the text. (**) This section is required only for Chapters 17 and 36.).

 0. Sets and Relations.

I. GROUPS AND SUBGROUPS.

 1. Introduction and Examples.
 2. Binary Operations.
 3. Isomorphic Binary Structures.
 4. Groups.
 5. Subgroups.
 6. Cyclic Groups.
 7. Generators and Cayley Digraphs.

II. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS.

 8. Groups of Permutations.
 9. Orbits, Cycles, and the Alternating Groups.
10. Cosets and the Theorem of Lagrange.
11. Direct Products and Finitely Generated Abelian Groups.
12. *Plane Isometries.

III. HOMOMORPHISMS AND FACTOR GROUPS.

13. Homomorphisms.
14. Factor Groups.
15. Factor-Group Computations and Simple Groups.
16. **Group Action on a Set.
17. *Applications of G-Sets to Counting.

IV. RINGS AND FIELDS.

18. Rings and Fields.
19. Integral Domains.
20. Fermat's and Euler's Theorems.
21. The Field of Quotients of an Integral Domain.
22. Rings of Polynomials.
23. Factorization of Polynomials over a Field.
24. *Noncommutative Examples.
25. *Ordered Rings and Fields.

V. IDEALS AND FACTOR RINGS.

26. Homomorphisms and Factor Rings.
27. Prime and Maximal Ideas.
28. *Gröbner Bases for Ideals.

VI. EXTENSION FIELDS.

29. Introduction to Extension Fields.
30. Vector Spaces.
31. Algebraic Extensions.
32. *Geometric Constructions.
33. Finite Fields.

VII. ADVANCED GROUP THEORY.

34. Isomorphism Theorems.
35. Series of Groups.
36. Sylow Theorems.
37. Applications of the Sylow Theory.
38. Free Abelian Groups.
39. Free Groups.
40. Group Presentations.

VIII.. AUTOMORPHISMS AND GALOIS THEORY.

41. Automorphisms of Fields.
42. The Isomorphism Extension Theorem.
43. Splitting Fields.
44. Separable Extensions.
45. *Totally Inseparable Extensions.
46. Galois Theory.
47. Illustrations of Galois Theory.
48. Cyclotomic Extensions.
49. Insolvability of the Quintic.
Appendix: Matrix Algebra.
Notations. 
Index.


Avez-vous une question à nous poser ?