Calculus for Scientists and Engineers: Pearson New International Edition

Early Transcendentals
Première édition

VitalSource eBook (VitalBook) - En anglais 45,00 € DRM

Spécifications


Éditeur
Pearson Education
Auteur
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz,
Langue
anglais
BISAC Subject Heading
MAT005000 MATHEMATICS / Calculus > MAT034000 MATHEMATICS / Mathematical Analysis
BIC subject category (UK)
PBK Calculus & mathematical analysis
Code publique Onix
05 College/higher education
Date de première publication du titre
01 novembre 2013
Subject Scheme Identifier Code
Classification thématique Thema: Calcul
Classification thématique Thema: Calcul et analyse mathématique

VitalSource eBook


Date de publication
01 novembre 2013
ISBN-13
9781292037479
Ampleur
Nombre de pages de contenu principal : 1704
Code interne
1292037474
Protection technique e-livre
DRM

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Sommaire


1. Functions

1.1 Review of functions

1.2 Representing functions

1.3 Inverse, exponential, and logarithmic functions

1.4 Trigonometric functions and their inverses

 

2. Limits

2.1 The idea of limits

2.2 Definitions of limits

2.3 Techniques for computing limits

2.4 Infinite limits

2.5 Limits at infinity

2.6 Continuity

2.7 Precise definitions of limits

 

3. Derivatives

3.1 Introducing the derivative

3.2 Rules of differentiation

3.3 The product and quotient rules

3.4 Derivatives of trigonometric functions

3.5 Derivatives as rates of change

3.6 The Chain Rule

3.7 Implicit differentiation

3.8 Derivatives of logarithmic and exponential functions

3.9 Derivatives of inverse trigonometric functions

3.10 Related rates

 

4. Applications of the Derivative

4.1 Maxima and minima

4.2 What derivatives tell us

4.3 Graphing functions

4.4 Optimization problems

4.5 Linear approximation and differentials

4.6 Mean Value Theorem

4.7 L’Hôpital’s Rule

4.8 Newton’s Method

4.9 Antiderivatives

 

5. Integration

5.1 Approximating areas under curves

5.2 Definite integrals

5.3 Fundamental Theorem of Calculus

5.4 Working with integrals

5.5 Substitution rule

 

6. Applications of Integration

6.1 Velocity and net change

6.2 Regions between curves

6.3 Volume by slicing

6.4 Volume by shells

6.5 Length of curves

6.6 Surface area

6.7 Physical applications

6.8 Logarithmic and exponential functions revisited

6.9 Exponential models

6.10 Hyperbolic functions

 

7. Integration Techniques

7.1 Integration Strategies

7.2 Integration by parts

7.3 Trigonometric integrals

7.4 Trigonometric substitutions

7.5 Partial fractions

7.6 Other integration strategies

7.7 Numerical integration

7.8 Improper integrals

 

8. Differential Equations

8.1 Basic ideas

8.2 Direction fields and Euler’s method

8.3 Separable differential equations

8.4 Special first-order differential equations

8.5 Modeling with differential equations

 

9. Sequences and Infinite Series

9.1 An overview

9.2 Sequences

9.3 Infinite series

9.4 The Divergence and Integral Tests

9.5 The Ratio, Root, and Comparison Tests

9.6 Alternating series

 

10. Power Series

10.1 Approximating functions with polynomials

10.2 Properties of Power series

10.3 Taylor series

10.4 Working with Taylor series

 

11. Parametric and Polar Curves

11.1 Parametric equations

11.2 Polar coordinates

11.3 Calculus in polar coordinates

11.4 Conic sections

 

12. Vectors and Vector-Valued Functions

12.1 Vectors in the plane

12.2 Vectors in three dimensions

12.3 Dot products

12.4 Cross products

12.5 Lines and curves in space

12.6 Calculus of vector-valued functions

12.7 Motion in space

12.8 Length of curves

12.9 Curvature and normal vectors

 

13. Functions of Several Variables

13.1 Planes and surfaces

13.2 Graphs and level curves

13.3 Limits and continuity

13.4 Partial derivatives

13.5 The Chain Rule

13.6 Directional derivatives and the gradient

13.7 Tangent planes and linear approximation

13.8 Maximum/minimum problems

13.9 Lagrange multipliers

 

14. Multiple Integration

14.1 Double integrals over rectangular regions

14.2 Double integrals over general regions

14.3 Double integrals in polar coordinates

14.4 Triple integrals

14.5 Triple integrals in cylindrical and spherical coordinates

14.6 Integrals for mass calculations

14.7 Change of variables in multiple integrals

 

Appendix A. Algebra Review

Appendix B. Proofs of Selected Theorems

Avez-vous une question à nous poser ?