Digital Signal Processing: Pearson New International Edition


4e édition

VitalSource eBook (VitalBook) - En anglais 52,00 € DRM - Momentanément indisponible

Spécifications


Éditeur
Pearson Education
Édition
4
Auteur
John G. Proakis, Dimitris K Manolakis,
Langue
anglais
BISAC Subject Heading
TEC067000 TECHNOLOGY & ENGINEERING / Signals & Signal Processing
BIC subject category (UK)
UYS Signal processing
Code publique Onix
05 Enseignement supérieur
Date de première publication du titre
01 novembre 2013
Subject Scheme Identifier Code
Classification thématique Thema: Traitement de signal

VitalSource eBook


Date de publication
01 novembre 2013
ISBN-13
9781292038162
Ampleur
Nombre de pages de contenu principal : 1024
Code interne
1292038160
Protection technique e-livre
DRM

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Sommaire


1 Introduction

1.1 Signals, Systems, and Signal Processing

1.2 Classification of Signals

1.3 The Concept of Frequency in Continuous-Time and Discrete-Time Signals

1.4 Analog-to-Digital and Digital-to-Analog Conversion

1.5 Summary and References

 

2 Discrete-Time Signals And Systems

2.1 Discrete-Time Signals

2.2 Discrete-Time Systems

2.3 Analysis of Discrete-Time Linear Time-Invariant systems

2.4 Discrete-Time Systems Described by Difference Equations

2.5 Implementation of Discrete-Time Systems

2.6 Correlation of Discrete-Time Signals

2.7 Summary and References

 

3 The Z-Transform And Its Application To The Analysis Of Lti Systems

3.1 The z-Transform

3.2 Properties of the z-Transform

3.3 Rational z-Transforms

3.4 Inversion of the z-Transform

3.5 Analysis of Linear Time Invariant Systems in the z-Domain

3.6 The One-sided z-Transform

3.7 Summary and References

 

4 Frequency Analysis Of Signals And Systems

4.1 Frequency Analysis of Continuous-Time Signals

4.2 Frequency Analysis of Discrete-Time Signals

4.3 Frequency-Domain and Time-Domain Signal Properties

4.4 Properties of the Fourier Transform for Discrete-Time Signals

4.5 Summary and References

 

5 Frequency Domain Analysis Of Lti Systems

5.1 Frequency-Domain Characteristics of Linear Time-Invariant Systems

5.2 Frequency Response of LTI Systems

5.3 Correlation Functions and Spectra at the Output of LTI Systems

5.4 Linear Time-Invariant Systems as Frequency-Selective Filters

5.5 Inverse Systems and Deconvolution

5.6 Summary and References

 

6 Sampling And Reconstruction Of Signals

6.1 Ideal Sampling and Reconstruction of Continuous-Time Signals

6.2 Discrete-Time Processing of Continuous-Time Signals

6.3 Analog-to-Digital and Digital-to-Analog Converters

6.4 Sampling and Reconstruction of Continuous-Time Bandpass Signals

6.5 Sampling of Discrete-Time Signals

6.6 Oversampling A/D and D/A Converters

6.7 Summary and References

 

7 The Discrete Fourier Transform: Its Properties And Applications

7.1 Frequency Domain Sampling:The Discrete Fourier Transform

7.2 Properties of the DFT

7.3 Linear Filtering Methods Based on the DFT

7.4 Frequency Analysis of Signals Using the DFT

7.5 The Discrete Cosine Transform

7.6 Summary and References

 

8 Efficient Computaiton Of The Dft: Fast Fourier Transform Algorithms

8.1 Efficient Computation of the DFT: FFT Algorithms

8.2 Applications of FFT Algorithms

8.3 A Linear Filtering Approach to Computation of the DFT

8.4 Quantization Effects in the Computation of the DFT

8.5 Summary and References

 

9 Implementation Of Discrete-Time Systems

9.1 Structures for the Realization of Discrete-Time Systems

9.2 Structures for FIR Systems

9.3 Structures for IIR Systems

9.4 Representation of Numbers

9.5 Quantization of Filter Coefficients

9.6 Round-Off Effects in Digital Filters

9.7 Summary and References

 

10 Design Of Digital Filers

10.1 General Considerations

10.2 Design of FIR Filters

10.3 Design of IIR Filters From Analog Filters

10.4 Frequency Transformations

10.5 Summary and References

 

11 Multirate Digital Signal Processing

11.1 Introduction

11.2 Decimation by a Factor D

11.3 Interpolation by a Factor I

11.4 Sampling Rate Conversion by a Rational Factor I/D

11.5 Implementation of Sampling Rate Conversion

11.6 Multistage Implementation of Sampling Rate Conversion

11.7 Sampling Rate Conversion of Bandpass Signals

11.8 Sampling Rate conversion by an Arbitrary Factor

11.9 Applications of Sampling Rate Conversion

11.10 Digital Filter Banks

11.11 Two-Channel Quadrature Mirror Filter Bank

11.12 M-Channel QMF Bank

11.13 Summary and References

 

12 Linear Prediction And Optimum Linear Filters

12.1 Random Signals, Correlation Functions and Power Spectra

12.2 Innovations Representation of a Stationary Random Process

12.3 Forward and Backward Linear Prediction

12.4 Solution of the Normal Equations

12.5 Properties of the Linear Prediction-Error Filters

12.6 AR Lattice and ARMA Lattice-Ladder Filters

12.7 Wiener Filters for Filtering and Prediction

12.8 Summary and References

 

13 Adaptive Filters

13.1 Applications of Adaptive Filters

13.2 Adaptive Direct-Form FIR Filters-The LMS Algorithm

13.3 Adaptive Direct-Form FIR Filters-RLS Algorithms

13.4 Adaptive Lattice-Ladder Filters

13.5 Summary and References

 

Appendices

Appendix A Random Number Generators

Appendix B Tables of Transition Coefficients for the Design of Linear-Phase Filters

References and Bibliography

Index


Avez-vous une question à nous poser ?